DCI	DCI Title	Disciplinary Core Ideas	Geoblox Books
PS1.B	Chemical Reactions	 In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. (HS-PS1-6) 	 Physical Geology
PS1.C	Nuclear Processes	• Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HSPS1- 8)	Historical GeologyAstronomy
PS2.B	Types of Interactions	 Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4),(HS-PS2-5) 	Astronomy
PS4.A	Wave Properties	 The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1) 	 Oceanography
LS1.A	Structure and Function	• Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1)	 Botany
LS1.C	Organization for Matter and Energy Flow in Organisms	• The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)	 Botany
LS2.B	Cycles of Matter and	 Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (HS-LS2-5) 	 Botany Plate Tectonics Environmental Degradation Petroleum Game

Geobiox Book Correlations to NGSS High School Disciplinary Core laeds*					
LS2.C	Ecosystem	• A complex set of interactions within an ecosystem can keep its numbers and types of	Environmental		
	Dynamics,	organisms relatively constant over long periods of time under stable conditions. If a	Degradation		
	Functioning, and	modest biological or physical disturbance to an ecosystem occurs, it may return to its	• Katrina		
	Resilience	more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a			
		very different ecosystem. Extreme fluctuations in conditions or the size of any population,			
		however, can challenge the functioning of ecosystems in terms of resources and habitat			
		availability. (HS-LS2-2),(HS-LS2-6)			
		 Moreover, anthropogenic changes (induced by human activity) in the 			
		environment—including habitat destruction, pollution, introduction of invasive species,			
		overexploitation, and climate change—can disrupt an ecosystem and threaten the survival			
		of some species. (HS-LS2-7)			
LS4.D	Biodiversity and	 Humans depend on the living world for the resources and other benefits provided by 	 Environmental 		
	Humans	biodiversity. But human activity is also having adverse impacts on biodiversity through	Degradation		
		overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive	• Katrina		
		species, and climate change. Thus sustaining biodiversity so that ecosystem functioning			
		and productivity are maintained is essential to supporting and enhancing life on Earth.			
		Sustaining biodiversity also aids humanity by preserving landscapes of recreational or			
		inspirational value. (secondary to HS-LS2-7) (Note: This Disciplinary Core Idea is also			
		addressed by HS-LS4-6.)			
LS4.C	Adaptation	Natural selection leads to adaptation, that is, to a population dominated by organisms	 Historical Geology 		
		that are anatomically, behaviorally, and physiologically well suited to survive and			
		reproduce in a specific environment. That is, the differential survival and reproduction of			
		organisms in a population that have an advantageous heritable trait leads to an increase in			
		the proportion of individuals in future generations that have the trait and to a decrease in			
		the proportion of individuals that do not. (HS-LS4-3),(HS-LS4-4)			
		 Adaptation also means that the distribution of traits in a population can change when 			
		conditions change. (HS-LS4-3)			
		• Changes in the physical environment, whether naturally occurring or human induced,			
		have thus contributed to the expansion of some species, the emergence of new distinct			
		species as populations diverge under different conditions, and the decline–and sometimes			
		the extinction–of some species. (HS-LS4-5),(HS-LS4-6)			
		 Species become extinct because they can no longer survive and reproduce in their 			
		altered environment. If members cannot adjust to change that is too fast or drastic, the			
		opportunity for the species' evolution is lost. (HS-LS4-5)			

LS4.D	Biodiversity and	Geobiox Book Correlations to NGSS High School Disciplinary Core laeas* Humans depend on the living world for the resources and other benefits provided by	 Environmental
	Humans	biodiversity. But human activity is also having adverse impacts on biodiversity through	Degradation
		overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive	• Katrina
		species, and climate change. Thus sustaining biodiversity so that ecosystem functioning	
		and productivity are maintained is essential to supporting and enhancing life on Earth.	
		Sustaining biodiversity also aids humanity by preserving landscapes of recreational or	
		inspirational value. (HS-LS4-6)	
ESS1.A	The Universe and Its	 The study of stars' light spectra and brightness is used to identify compositional 	Astronomy
	Stars	elements of stars, their movements, and their distances from Earth. (HS-ESS1-2), (HS-ESS1-3)	
		• The Big Bang theory is supported by observations of distant galaxies receding from our	
		own, of the measured composition of stars and non-stellar gases, and of the maps of	
		spectra of the primordial radiation (cosmic microwave background) that still fills the universe. (HSESS1- 2)	
		• Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion	
		within stars produces all atomic nuclei lighter than and including iron, and the process	
		releases electromagnetic energy. Heavier elements are produced when certain massive	
		stars achieve a supernova stage and explode. (HS-ESS1-2), (HS-ESS1-3)	
ESS1.C	-	• Continental rocks, which can be older than 4 billion years, are generally much older than	Plate Tectonics
	Earth	the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)	
ESS1.C	The History of Dianet	 Although active geologic processes, such as plate tectonics and erosion, have destroyed 	Astronomy
E331.C	Earth	or altered most of the very early rock record on Earth, other objects in the solar system,	Historical Geology
		such as lunar rocks, asteroids, and meteorites, have changed little over billions of years.	
		Studying these objects can provide information about Earth's formation and early history.	
		(HS-ESS1-6)	
ESS2.B	Plate Tectonics and	• Plate tectonics is the unifying theory that explains the past and current movements of	 Plate Tectonics
	Large-Scale System	the rocks at Earth's surface and provides a framework for understanding its geologic	
	Interactions	history. (ESS2.B Grade 8 GBE)	
PS1.C	Nuclear Processes	• Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear	 Historical Geology
		lifetimes allow radiometric dating to be used to determine the ages of rocks and other	
		materials. (secondary to HS-ESS1-5),(secondary to HS-ESS1-6)	

*Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.

PS3.D	Energy in Chemical Processes and Everyday Life	 • Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-1) 	 Astronomy
ESS2.A	Earth Materials and Systems	• Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HSESS2-1),(HS-ESS2-2)	 Plate Tectonics Physical Geology Environmental Degradation Katrina
ESS2.A	Earth Materials and Systems	• Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth's interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)	 Plate Tectonics Physical Geology Historical Geology Volcano
ESS2.A	Earth Materials and Systems	• The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun's energy output or Earth's orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. (HS-ESS2-4)	 Historical Geology Oceanography Volcano Plate Tectonics Physical Geology Environmental Degradation Katrina Grand Canyon Guadalupe Mountains Groundwater
ESS2.B	Plate Tectonics and Large-Scale System Interactions	 The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3) Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth's crust. (ESS2.B Grade 8 GBE) (HS-ESS2-1) 	• Plate Tectonics

*Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.

ESS2.C	The Roles of Water	 Geobiox Book Correlations to NGSS High School Disciplinary Core Ideas* The abundance of liquid water on Earth's surface and its unique combination of physical 	 Oceanography
	in Earth's Surface	and chemical properties are central to the planet's dynamics. These properties include	• Groundwater
	Processes	water's exceptional capacity to absorb, store, and release large amounts of energy,	
		transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the	
		viscosities and melting points of rocks. (HS-ESS2-5)	
ESS2.D	Weather and	 The foundation for Earth's global climate systems is the electromagnetic radiation from 	 Environmental
	Climate	the sun, as well as its reflection, absorption, storage, and redistribution among the	Degradation
		atmosphere, ocean, and land systems, and this energy's re-radiation into space. (HS-ESS2-	0
		2),(HS-ESS2-4)	
		• Gradual atmospheric changes were due to plants and other organisms that captured	
		carbon dioxide and released oxygen. (HS-ESS2-6),(HS-ESS2-7)	
ESS2.D	Weather and	Changes in the atmosphere due to human activity have increased carbon dioxide	 Environmental
	Climate	concentrations and thus affect climate. (HS-ESS2- 6), (HS-ESS2-4)	Degradation
ESS2.E	Biogeology	• The many dynamic and delicate feedbacks between the biosphere and other Earth	 Environmental
		systems cause a continual co-evolution of Earth's surface and the life that exists on it. (HS-	Degradation
		ESS2-7)	• Katrina
PS4.A	Wave Properties	• Geologists use seismic waves and their reflection at interfaces between layers to probe	 Physical Geology
		structures deep in the planet. (secondary to HS-ESS2-3)	
ESS2.D	Weather and	• Current models predict that, although future regional climate changes will be complex	 Environmental
	Climate	and varied, average global temperatures will continue to rise. The outcomes predicted by	Degradation
		global climate models strongly depend on the amounts of human-generated greenhouse	
		gases added to the atmosphere each year and by the ways in which these gases are	
		absorbed by the ocean and biosphere. (secondary to HSESS3- 6)	
ESS3.A	Natural Resources	 Resource availability has guided the development of human society. 	 Environmental
		(HS-ESS3-1)	Degradation
		• All forms of energy production and other resource extraction have associated economic,	• Katrina
		social, environmental, and geopolitical costs and risks as well as benefits. New	 Petroleum Game
		technologies and social regulations can change the balance of these factors. (HS-ESS3-2)	
ESS3.B		• Natural hazards and other geologic events have shaped the course of human history;	Physical Geology
		[they] have significantly altered the sizes of human populations and have driven human	Environmental
		migrations. (HS-ESS3-1)	Degradation
			• Katrina
			 Oceanography
			VolcanoPlate Tectonics

*Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.

	Human Impacts on	Geodiox Book Correlations to NGSS High School Disciplinary Core lateas The sustainability of human sociatios and the biodiversity that supports them requires	 Environmental
ESS3.C	Human Impacts on	• The sustainability of human societies and the biodiversity that supports them requires	
	Earth Systems	responsible management of natural resources. (HS-ESS3-3)	Degradation
		• Scientists and engineers can make major contributions by developing technologies that	• Katrina
		produce less pollution and waste and that preclude ecosystem degradation. (HS-ESS3-4)	 Petroleum Game
ESS3.D	Global Climate	• Though the magnitudes of human impacts are greater than they have ever been, so too	 Environmental
	Change	are human abilities to model, predict, and manage current and future impacts. (HS-ESS3-5)	Degradation
			• Katrina
			 Petroleum Game
ETS1.B	Developing Possible	• When evaluating solutions, it is important to take into account a range of constraints,	 Environmental
	Solutions	including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	Degradation
		environmental impacts. (secondary to HS-ESS3-2),(secondary HS-ESS3-4)	• Katrina
			 Petroleum Game
ETS1.A	Defining and	• Criteria and constraints also include satisfying any requirements set by society, such as	 Environmental
	Delimiting	taking issues of risk mitigation into account, and they should be quantified to the extent	Degradation
	Engineering	possible and stated in such a way that one can tell if a given design meets them.	• Katrina
	Problems	(HS-ETS1-1)	 Petroleum Game
		• Humanity faces major global challenges today, such as the need for supplies of clean	
		water and food or for energy sources that minimize pollution, which can be addressed	
		through engineering. These global challenges also may have manifestations in local	
		communities. (HS-ETS1-1)	
ETS1.B	Developing Possible	 When evaluating solutions, it is important to take into account a range of constraints, 	Environmental
L131.D	Solutions	including cost, safety, reliability, and aesthetics, and to consider social, cultural, and	Degradation
	5010110113	environmental impacts. (HS-ETS1-3)	• Katrina
		 Both physical models and computers can be used in various ways to aid in the 	Petroleum Game
		engineering design process. Computers are useful for a variety of purposes, such as	
		running simulations to test different ways of solving a problem or to see which one is most	
		efficient or economical; and in making a persuasive presentation to a client about how a	
		given design will meet his or her needs. (HS-ETS1-4)	
ETS1.C	Optimizing the	 Criteria may need to be broken down into simpler ones that can be approached 	 Environmental
		· · · · · ·	
	Design Solution	systematically, and decisions about the priority of certain criteria over others (trade-offs)	Degradation
	Design Solution	systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HSETS1- 2)	Degradation ● Katrina